A. Tonomura

Electron Holography
Springer Series in Optical Sciences
Editorial Board: A. L. Schawlow K. Shimoda A. E. Siegman T. Tamir

Managing Editor: H. K. V. Lotsch

42 Principles of Phase Conjugation
By B. Ya. Zel'dovich, N. F. Pilipetsky, and V. V. Shkunov

43 X-Ray Microscopy
Editors: G. Schmahl and D. Rudolph

44 Introduction to Laser Physics
By K. Shimoda 2nd Edition

45 Scanning Electron Microscopy
Physics of Image Formation and Microanalysis
By L. Reimer

46 Holography and Deformation Analysis
By W. Schumann, J.-P. Zürcher, and D. Cuche

47 Tunable Solid State Lasers
Editors: P. Hammerling, A. B. Budgör, and A. Pinto

48 Integrated Optics
Editors: H. P. Nolting and R. Ulrich

49 Laser Spectroscopy VII
Editors: T. W. Hänsch and Y. R. Shen

50 Laser-Induced Dynamic Gratings
By H. J. Eichler, P. Günter, and D. W. Pohl

51 Tunable Solid State Lasers for Remote Sensing

52 Tunable Solid-State Lasers II
Editors: A. B. Budgör, L. Esterowitz, and L. G. DeShazer

53 The CO₂ Laser
By W. J. Witteman

54 Lasers, Spectroscopy and New Ideas
A Tribute to Arthur L. Schawlow
Editors: W. M. Yen and M. D. Levenson

55 Laser Spectroscopy VIII
Editors: W. Persson and S. Svanberg

56 X-Ray Microscopy II
Editors: D. Sayre, M. Howells, J. Kirz, and H. Rarback

57 Single-Mode Fibers
Fundamentals
By E.-G. Neumann

58 Photoacoustic and Photothermal Phenomena
Editors: P. Hess and J. Petzl

59 Photorefractive Crystals
in Coherent Optical Systems
By M. P. Petrov, S. I. Stepanov, and A. V. Khomenko

60 Holographic Interferometry
in Experimental Mechanics
By Yu. I. Ostrovsky, V. P. Shchepinov, and V. V. Yakovlev

61 Millimetre and Submillimetre Wavelength Lasers
A Handbook of cw Measurements
By N. G. Douglas

62 Photoacoustic and Photothermal Phenomena II
Editors: J. C. Murphy, J. W. Maclachlan Spicer, L. C. Aamodt, and B. S. H. Royce

63 Electron Energy Loss Spectrometers
The Technology of High Performance
By H. Ibach

64 Handbook of Nonlinear Optical Crystals
By V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan

65 High-Power Dye Lasers
Editor: F. J. Duarte

66 Silver Halide Recording Material
for Holography
and Their Processing
By H. I. Bjelkhagen

67 X-Ray Microscopy III
Editors: A. G. Michette, G. R. Morrison, and C. J. Buckley

68 Holographic Interferometry
Principles and Methods
Editor: P. K. Rastogi

69 Photoacoustic and Photothermal Phenomena III
Editor: D. Bicanic

70 Electron Holography
By A. Tonomura

Volumes 1-41 are listed at the end of the book
Electron holography has recently paved a new way for observing and measuring microscopic objects and fields that were previously inaccessible employing other techniques. Full use is made of the extremely short wavelength of electrons, enabling electron holography to have a great impact on fields ranging from basic science to industrial applications. This book will provide an overview of the present state of electron holography for scientists and engineers entering the field. The principles, techniques and applications which have already been developed, as well as those which are expected to arise in the near future, will be discussed. The strange and interesting nature of electron quantum interference has intrigued the author who has devoted most of his life to this field, and motivated him to write this book in the hope of raising interest in, and encouraging others to enter, the field.

The author would like to express his sincere thanks to Professor Emeritus Koichi Shimoda of Tokyo University, his mentor during his university days. His sincere gratitude goes to Professor Chen Ning Yang of SUNY Stony Brook, Professor Hiroshi Ezawa of Gakushuin University, Professor Emeritus Ryoji Uyeda of Nagoya University, and Dr. Akira Fukuhara of Hitachi, Ltd. for their continued encouragement and helpful suggestions regarding the electron-holography experiments. Thanks are also due to the following colleagues for their collaboration in carrying out electron holography experiments: Tsuyoshi Matsuda, Dr. Junji Endo, Nobuyuki Osakabe, Takeshi Kawasaki, Takao Matsumoto, Takaho Yoshida, Dr. Ken Harada, Dr. John Bonevich, Hiroto Kasai, Shigeo Kubota, and Shokichi Matsunami of Hitachi, Ltd., Professor Giulio Pozzi of Lecce University, and to Dr. Kazuo Ishizuka, Dr. Takayoshi Tanji, Dr. Quingxin Ru, and other members of the Research Development Corporation of Japan (JRDC). Special thanks are due to Mari Saito and Yuka Sugao of JRDC and Hiromi Yamasaki of Hitachi, Ltd. for typing the manuscript and preparing the figures. Lastly, my gratitude goes to Dr. Koichi Urabe of Hitachi, Ltd. for reading and correcting the manuscript.

Hatoyama

August 1993

Akira Tonomura
Contents

1. Introduction .. 1

2. Principles of Holography 2
 2.1 In-Line Holography 3
 2.2 Off-Axis Holography 6
 2.3 Holography Using Two Different Kinds of Waves 6

3. Electron Optics ... 9
 3.1 Electron Microscopy 9
 3.1.1 Ray Diagram 9
 3.1.2 Electron Guns 9
 3.1.3 Electron Lenses 10
 3.2 Interference Electron Microscope 12
 3.3 Coherence Properties of Electron Beams 14
 3.3.1 Temporal Coherence 15
 3.3.2 Spatial Coherence 16

4. Historical Development of Electron Holography 18
 4.1 In-Line Holography 19
 4.2 Off-Axis Holography 23

5. Electron Holography 27
 5.1 Electron-Hologram Formation 27
 5.1.1 Ray Diagram 27
 5.1.2 Experimental Apparatus 28
 a) Electron Gun and Illumination System 29
 b) Electron Interferometer 30
 c) Recording System 31
 5.2 Image Reconstruction 31
 5.2.1 Interference Microscopy 32
 5.2.2 Phase-Amplified Interference Microscopy 33
 a) Optical Method 33
 b) Numerical Method 36
 5.2.3 Image Restoration by Aberration Compensation 38
 5.2.4 Micro-Area Electron Diffraction 41
6. Aharonov–Bohm Effect:
The Principle Behind the Interaction of Electrons with Electromagnetic Fields ... 44
6.1 What is the Aharonov–Bohm Effect? 44
6.2 Unusual Features of the Aharonov–Bohm Effect:
 Modified Double-Slit Experiments 47
6.3 Fiber-Bundle Description of the Aharonov–Bohm Effect 48
6.4 Early Experiments and Controversy 52
 6.4.1 Early Experiments ... 52
 6.4.2 Nonexistence of the Aharonov–Bohm Effect 53
 a) Non-Stokesian Vector Potential 53
 b) Hydrodynamical Formulation 54
 c) Doubts About the Validity of Early Experiments 54
 6.4.3 Dispute About the Nonexistence
 of the Aharonov–Bohm Effect 55
 a) Non-Stokesian Vector Potentials 55
 b) Hydrodynamical Formulation 56
 c) Discussions on the Validity of Experiments 56
6.5 Experiments Confirming the Aharonov–Bohm Effect 57
 6.5.1 An Experiment Using Transparent Toroidal Magnets 58
 a) Sample Preparation .. 58
 b) Experimental Results 59
 c) Discussions of the Validity of the Experiment 60
 6.5.2 An Experiment Using Toroidal Magnets
 Covered with a Superconducting Film 61
 a) Sample Preparation .. 61
 b) Experimental Results 64

7. Electron–Holographic Interferometry 69
7.1 Thickness Measurements ... 69
 7.1.1 Principle of the Measurement 69
 7.1.2 Applications of Thickness Measurement 70
 7.1.3 Other Applications .. 72
7.2 Surface Topography .. 73
7.3 Electric Field Distribution 74
7.4 Domain Structures in Ferromagnetic Thin Films 75
 7.4.1 Measurement Principles 75
 7.4.2 Magnetic Domain Walls in Thin Films 77
7.5 Domain Structures in Fine Ferromagnetic Particles 80
7.6 Magnetic Devices .. 83
7.7 Domain Structures in Three-Dimensional Particles 86
7.8 Static Observation of Fluxons in the Profile Mode 89
 7.8.1 Quantized Flux (Fluxons) 89
 7.8.2 Experimental Method 90
 7.8.3 Experimental Results 91
7.9 Dynamic Observation of Fluxons in the Profile Mode 94
 7.9.1 Thermally Excited Fluxons 94
1. Introduction

Electron holography is an imaging technique that records the electron interference pattern of an object on film (hologram) and then reconstructs an optical image by illuminating the hologram with a laser beam. In this process, electron wave fronts are transformed into optical wave fronts. Images of microscopic objects and fields that are so small that they can be observed only by using an electron beam with an extremely short wavelength are enlarged and reconstructed on an optical bench. This allows versatile optical techniques to be applied to overcome the limitations of electron microscopes.

Holography is now widely known - not only by scientists but also by artists, philosophers, and the general public - as a kind of stereoscopic photography using a laser beam. Holography was, however, originally invented in 1949 by Dennis Gabor, as a way of breaking through the resolution limit of electron microscopes [1.1,2]. The resolution of electron microscopy is not determined by the fundamental limitation, the electron wavelength, but by the large aberrations of the objective lens. It is impossible to construct an aberration-free lens system by combining convex and concave lenses due to the lack of any practical concave lens. Gabor intended to optically compensate for the aberrations in the reconstruction stage of holography. The intrinsic value of holography was not fully recognized until 1962, when Leith and Upatnieks [1.3] reconstructed clear images by using a coherent laser beam. Similarly, practical applications of electron holography have been made possible by the development of a coherent field-emission electron beam [1.4]. With this beam, electron holography has made a remarkable step towards new and practical applications [1.5-13].

To take a concrete example, the phase distribution of the electron wave function transmitted through an object has become observable to within a measurement precision as high as $2\pi/100$, while in electron microscopy only the intensity distribution can be observed. This technique has enabled us to directly observe magnetic lines of force of a magnetic object: The contour fringes in the interference micrograph follow magnetic lines in $h/e \approx (4\times10^{-15} \text{Wb})$ units. This was applied to actual problems such as the magnetic-domain structure of a ferromagnetic thin film and also the observation of magnetic fluxons penetrating a superconductor.
2. Principles of Holography

Holography, a unique imaging technique that does not use lenses, is only based on the most fundamental properties of waves, interference and diffraction. Holography is therefore applicable to all kinds of waves - light, X-ray, sound, electron, or neutron waves - regardless of whether there is a lens for the wave. A major feature of holography is that a complete wave (i.e., a complex amplitude) can be reconstructed from an exposed film called a hologram (a photograph containing all information). For this reason, laser holography can produce a far more realistic stereoscopic image than can be provided by any other technique.

The first step in holography consists of recording an interference pattern, or hologram, between the reference wave ϕ_r and the wave ϕ_0 scattered from an object. Here, ϕ_0 and ϕ_r represent the complex amplitudes of these waves. Since these two waves are partial waves emitted from a common source, they are coherently superposed at the hologram plane to interfere with each other. The intensity I of the interference pattern is given by

$$I = |\phi_0 + \phi_r|^2. \quad (2.1)$$

When the interference pattern is exposed onto a film and developed, the amplitude transmittance t of the film is given by

$$t = I^{-\gamma/2} = |\phi_0 + \phi_r|^{-\gamma}, \quad (2.2)$$

where γ indicates the contrast value of the film. If the film is reversed and the contrast is inverted to make $\gamma = -2$, t becomes proportional to I, though this condition is not always necessary for image reconstruction.

The second step in holography consists of reconstructing the image of the original object. For simplicity, the hologram is illuminated with the same reference wave as that used in forming the hologram. The transmitted amplitude T is then given by

$$T = |\phi_0 + \phi_r|^2 \phi_r = (|\phi_0|^2 + |\phi_r|^2)\phi_r + |\phi_r|^2 \phi_0 + \phi_0^* \phi_r^2. \quad (2.3)$$

The imaging properties of holography can be understood simply by interpreting the terms in this equation. The first term corresponds to the transmitted wave, and the second term corresponds to the wave scattered from the object. This means that an exact image can be reconstructed if the second term can be observed independently of the others. The third
term is similar to the second one, but its phase value is opposite in sign. This term produces a conjugate image, the amplitude of which is the complex-conjugate of the reconstructed image.

The image formation is essentially the same, even when the hologram is illuminated with a wave whose wavelength differs from that of the original reference wave. Parameters such as the image magnification and the distance between the hologram and the image depend on the ratio of the two wavelengths. This will be discussed in more detail later. Up to this point, holographic image formation seems to work perfectly, but this is not the case when higher-order terms are taken into consideration. The aberrations associated with this type of imaging are similar to those for imaging with an optical lens [2.1].

2.1 In-Line Holography

The simplest way of producing a hologram is illustrated in Fig. 2.1a which shows a point object illuminated with a plane wave. The transmitted plane wave plays here the role of a reference wave. This type of holography is called in-line holography because the object and reference waves propagate along a line. The amplitudes of these reference and object waves can be expressed as

\[\phi_r = e^{ikx} \quad \text{and} \quad \phi_o = i \frac{f}{r} e^{-ikr}, \]

where \(f \) is the scattering amplitude from the point object. Then the intensity distribution \(I(x, y) \) on the hologram plane at a distance \(l \) from the object is given by

\[I(x, y) = |\phi_0 + \phi_r|^2 \approx 1 + \left(\frac{f}{l} \right)^2 - \frac{2f}{l} \sin \left(\frac{k(x^2 + y^2)}{2l} \right), \]

if \(l^2 \gg x^2 + y^2 \) and consequently \(r = \sqrt{l^2 + x^2 + y^2} \approx l + (x^2 + y^2)/(2l) \). The interference pattern given by (2.5) consists of concentric fringes and is called a zone plate.

If this hologram is recorded on film with a contrast of \(\gamma = -2 \) and is then illuminated with a plane wave identical to the reference wave, it is possible to express the resultant transmitted amplitude \(T(x, y) \) as

\[T(x, y) = e^{ikx} \left[1 + \left(\frac{f}{l} \right)^2 + i \frac{f}{l} \exp \left(\frac{ik(x^2 + y^2)}{2l} \right) - i \frac{f}{l} \exp \left(-\frac{ik(x^2 + y^2)}{2l} \right) \right]. \]

(2.6)
Fig. 2.1. In-line holography of a point object: (a) Hologram formation, and (b) image reconstruction.

The first and second terms here represent the transmitted plane waves. The third term gives the original wave scattered from the point object, that is, a spherical wave diverging from point O (Fig. 2.1b). The fourth term represents a spherical wave converging to the point O', located at the position mirror-symmetric to the point O with respect to the hologram plane. This fourth term describes the conjugate image.
In short, the hologram of a point object, of which the hologram is a zone plate, plays dual roles of concave and convex lenses with the same focal length \(f \). Illuminating this hologram with a plane wave therefore produces both divergent and convergent spherical waves.

We can now discuss the resolution of the reconstructed image. An in-line hologram acts as a lens, and a point image is formed by the interference of all the waves diffracted from the zone-plate fringes. The image resolution \(d \) is therefore determined essentially by the diameter \(D \) of the zone plate, which corresponds to the diameter of the lens aperture, i.e.,

\[
d = 1.6 \frac{\lambda}{D} f.
\] (2.7)

This value of \(d \) is equal to the shortest fringe spacing at the outermost fringe of the zone plate.

Generally, it is not possible to observe only the reconstructed image: the defocused pattern of the conjugate image is inevitably superimposed onto the reconstructed image. This results from the fact that the two images both lie on the same axis. The problem of separating the twin images was a persistent obstacle to holography. A solution was found, however, by introducing a new method called off-axis holography [2.2]. With this method, a reference wave is tilted with respect to an object wave. Further details will be provided in Sect.2.2 on off-axis holography.

Although off-axis holography could solve the problem of a conjugate image, further efforts were made to reconstruct in-line holographic images free from disturbances. The most effective of these methods is Fraunhofer in-line holography. With this approach, in-line holograms are formed in the Fraunhofer diffraction plane of an object, that is, under the condition

\[
a^2 \ll \lambda f,
\] (2.8)

![Fig.2.2. Fraunhofer in-line holography. When a hologram is formed in the Fraunhofer diffraction region of an object (2.8), the reconstructed image is not disturbed by the conjugate image. The dimensions are reduced to those in the hologram-formation process](image)